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Abstract

The theory of a Cosserat point is developed as a continuum model, which is inherently nonlinear and is valid for
arbitrary constitutive equations. Here, attention is confined to nonlinear elastic response, which is hyperelastic with a
strain energy function, but large displacements, deformations and rotations are allowed. It is shown that the theory of a
Cosserat point can be used to formulate a numerical solution procedure for the dynamic three-dimensional motion of
nonlinear curved rods by modeling the rod as a set of N connected Cosserat points (like finite elements). Specifically, the
Cosserat model allows for axial extension, tangential shear deformation, normal cross-sectional extension, normal
cross-sectional shear deformation and rotary inertia. The Cosserat approach ensures that the global forms of the
balances of linear and angular momentum are satisfied and the hyperelastic nature of the constitutive equations is
preserved, since the response functions are determined by derivatives of a strain energy function. A number of static
example problems have been considered, which examine the influence of shear deformation by comparing Cosserat
solutions with nonlinear solutions of an elastica. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A rod-like structure is a three-dimensional body that is essentially a space curve with some small cross-
sectional area. The analysis of large deformations and large rotations of rods is of continued interest be-
cause such structures can be used to model flexible robotic arms, helicopter blades, DNA strands, polymer
chains, etc. The early works of Kirchhoff and Euler, who analyzed large deformations of elastic rods in
equilibrium, have been discussed by Love (1944). Within the context of these formulations, the reference
curve of the rod is taken to be inextensible and the cross-sections are presumed to remain rigid and per-
pendicular to the tangent to this reference curve. Antman (1972,1974) has generalized this formulation of
rod theory to include extension of the reference curve and tangential shear deformation, but the material
fibers in the cross-section remain rigid.
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Using the theory of a Cosserat curve with two director vectors, Green et al. (1974a,b) have developed a
more general rod theory that includes extension of the reference curve, tangential shear deformation,
normal cross-sectional extension, and normal cross-sectional shear deformation (these deformations are
described in detail later in this section). Based on this model, a hierarchy of constrained theories which
eliminate one or more of these deformation modes has been discussed by Naghdi and Rubin (1984). Also, a
simpler intrinsic formulation of a generalized Bernoulli-Euler type rod theory has recently been considered
by Rubin (1997).

The equations of motion for rods are nonlinear partial differential equations, which are functions of one
space variable and time. Consequently, for static problems, the equations become ordinary differential
equations, which can be integrated using standard techniques like the shooting method to satisfy boundary
conditions. In contrast, for dynamical problems, it is necessary to introduce some numerical procedure
which discretizes the equations.

It is well known that the constitutive equations of a rod theory necessarily require coupling of the geo-
metry of the rod-like structure and the material properties of the three-dimensional material from which
the structure is made. For example, the typical coefficient E*/* of the bending moment in simple beam
theory depends on the product of a material constant (Young’s modulus of elasticity £*) and a geometric
constant (the second moment of area of the cross-section I*). In this regard, from a constitutive point of
view, the more general Cosserat theory with two deformable directors becomes simpler than theories in
which the cross-section is rigid because it is possible to develop restrictions on the constitutive equations for
nonlinear elastic rods that use the three-dimensional strain energy function and ensure consistency between
the solutions of the rod theory and those of the three-dimensional theory for all homogeneous deformations
(Rubin, 1996). Simo et al. (1990) also noted that the three-dimensional constitutive equation can be used in
their numerical formulation of Cosserat-type shell theory when the director is deformable.

Simo (1985) has discussed a convenient parameterization of the rod model developed by Antman (1972),
and Simo and Vu-Quoc (1986) have considered the associated finite element formulation. In this theory, the
basic kinematic quantities are the position of a point on the reference curve and an orthogonal transfor-
mation that defines the rotation of an orthonormal triad that is attached to the cross-section at each point
on the rod. The computational procedure uses a variational formulation of the equations of motion and an
expansion of the kinematic quantities in terms of shape functions and nodal values. In particular, the
constitutive equations for the rod theory are assumed to hold pointwise and the constitutive response of an
individual element is obtained in the usual manner by integration.

The theory of a Cosserat point (Rubin, 1985a) is a special continuum theory that models deformation
of a small structure that is essentially a point surrounded by some small but finite region. This theory has
been used to formulate the numerical solution of problems in continuum mechanics (Rubin, 1985b,1986,
1987,1995) and it has been used by Green and Naghdi (1991) to model composite materials. Also, a unified
treatment of constraints in the theory of a Cosserat point has been considered by O’Reilly and Vardi
(1998). This work generalizes the notion of a Cosserat point to a collection of Cosserat points, which are
connected by generalized constraints that can be explicit functions of time. Alternative theories for ana-
lyzing homogeneous deformations of zero-dimensional bodies have been developed by Slawianowski
(1975,1982) and for pseudo-rigid bodies by Cohen (1981), Muncaster (1984) and Cohen and Muncaster
(1984a,b).

Previous use of the theory of a Cosserat point for numerical solution procedures has been restricted to
modeling elements that experience essentially homogeneous deformations. In contrast, here, the theory of a
Cosserat point is used to model deformations of a rod element that can experience both general homo-
geneous deformation and inhomogeneous deformation associated with bending and torsion. Also, the
initial shape of the rod can be curved.

Standard numerical methods for the equations of nonlinear hyperelasticity expand the position vector in
terms of shape functions, which depend on the spatial variables only, and vector coefficients, which depend
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on time only (Finlayson and Scriven, 1966). For the method of weighted residuals (Petrov—Galerkin
method), the local form of the balance of linear momentum is multiplied by weighting functions and then is
integrated over the spatial region occupied by the structure to obtain a set of ordinary differential equations
for the vector coefficients. If the weighting functions are the same as the shape functions, then this pro-
cedure is called the Bubnov—Galerkin method.

The degenerated shell approach developed by Ahmad et al. (1970) uses shape functions which are linear
in the thickness coordinate. Within this context, it is possible to interpret the developments from the three-
dimensional theory of the field equations: for Cosserat surfaces (Naghdi, 1972, Section 11) as a degenerated
shell approach; for Cosserat rods (Green, et al., 1974a) as a degenerated rod approach; and for Cosserat
points (Rubin, 1985a) as a degenerated point approach. If each element only experiences homogeneous
deformation, then the Galerkin and the Cosserat approaches can be shown to be identical (except for
possible differences in the director inertia coefficients; e.g. Rubin, 1985b; Rubin, 1995; Solberg and Pa-
padopoulos, 1999). However, if the deformation in each element is allowed to be inhomogeneous, then the
Galerkin and the Cosserat approaches can be different. This is because, within the context of the direct
approach of the Cosserat theory, the constitutive equations for inhomogeneous deformations (like bending
and torsion) are developed by comparison with known exact solutions or with appropriate experiments.

Specifically, for the numerical procedure developed here, the rod is divided into N elements that are
connected through kinematic and kinetic conditions at their common ends. Each rod element is modeled as
a Cosserat point. Fig. 1 shows the /th element, which in its present configuration occupies the region of
space ;P that is bounded by the lateral surface ;0P and the two ends ;0P; and ;0P,. Within the context of
the theory, these ends are assumed to remain planar surfaces. The plane ;0P; is characterized by the two
vectors ;d;(¢#)(o = 1,2) and its centroid is located by the position vector ,;d;(¢). Similarly, the plane ;0P is
characterized by the two vectors ;,;d;(¢) and its centroid is located by the position vector ,d;(¢). It will be
shown that ,d; (i =0,1,2) represent nodal quantities in the proposed numerical procedure. Moreover,
since ;41d;(f) and ;. d; are general vectors, the theory allows each of these cross-sections to experience
tangential shear deformation (the bisector of the two vectors connecting the centroids of the elements on
either sides of the node does not lie in the cross-sectional plane at that node), normal cross-sectional ex-
tension (the magnitudes of ;d; and ,,,d,* are not constant), and normal cross-sectional shear deformation
(the angle between ,d} and ,d; and the angle between ,.,d] and ,,,d; are not constant). In particular, the
physical importance of modeling normal cross-sectional extension in contact problems has been previously
demonstrated (Naghdi and Rubin, 1989).

An outline of the main contents of this paper is as follows. Section 2 describes the balance laws of a
single Cosserat point, Section 3 discusses superposed rigid body motions (SRBM), Section 4 presents
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Fig. 1. Sketch of the Ith element that models a section of the rod.
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constitutive equations for nonlinear elastic Cosserat points and Section 5 describes restrictions on the
constitutive equations for homogeneous deformations. Section 6 describes an alternative reformulation of
the balance laws, Section 7 discusses boundary conditions and Section 8 presents solutions to a set of
problems that are used to determine the constitutive coefficients. Section 9 describes the numerical solution
procedure for rod problems where the rod is modeled as a set of N connected Cosserat points. Then,
Section 10 presents a number of examples which compare the Cosserat solution with that of the elastica,
and which show the significant influence of shear deformation in some cases. Finally, Section 11 presents a
brief summary of the work and Appendices A through E present relevant details of the developments.

Throughout the text, bold faced symbols are used to denote vector and tensor quantities. Also, I denotes
the unity tensor; tr(A) denotes the trace of the second-order tensor A; AT denotes the transpose of A; A~'
denotes the inverse of A; A~ denotes the inverse of the transpose of A; and det(A) denotes the determinant
of A. The scalar a - b denotes the dot product between two vectors a,b; the scalar A - B = tr(ABT) denotes
the dot product between two second-order tensors A,B; the vector a x b denotes the cross product between
a and b; and the second order tensor a ® b denotes the tensor product between a and b. Moreover, the usual
summation convention over repeated lower cased indices is implied with the range of Greek indices always
being (1,2). The range of Latin indices will usually be (1,2,3) but sometimes it will be (0,1,...,5). Conse-
quently, the range will be explicitly stated whenever it is not clear from the context. Moreover, there is no
sum implied when the indices are upper cased letters.

2. Balance laws of the Cosserat point by the direct approach

In this section, the balance laws of the theory of a Cosserat point for a rod-like element are developed by
a direct approach. However, the same forms of these balance laws can be developed by using a kinematic
assumption and integrating the full three-dimensional theory as is shown in Appendix A. Also, for sim-
plicity of notation, the kinematic and kinetic quantities associated with the /th Cosserat point that models
the Ith section of the rod will be written without a subscript . However, later the subscript 7 will be used to
distinguish between neighboring Cosserat points that are being connected when the numerical solution of
rod problems is formulated.

In its present configuration at time ¢, the Cosserat point occupies a three-dimensional region of space P
that is bounded by the lateral surface 0P, and the two ends 0P, and 0P,, which are assumed to be planes
(Fig. 2). A motion of the Cosserat point is characterized by six vector functions of time only

di:di(t) fori:0717...,5. (1)

The vector d, locates the position of the Cosserat point relative to a fixed origin, the three director vectors
(d;, d;,d3) are assumed to be linearly independent

d1/2:d1><d2'd3>0, (2)

and they represent homogeneous deformations of the Cosserat point. The two director vectors (d4,ds)
characterize the potentially nonuniform shape of the Cosserat point and they are used to model inho-
mogeneous deformations. Also, the velocities w; are defined by

w,=d, fori=0,1,...,5, (3)

where a superposed dot denotes time differentiation. Moreover, for the numerical procedure discussed in
this paper, it is necessary to relate the vectors d; to the vectors associated with the ends of the rod section
shown in Fig. 1, but this will be addressed later in the text.

The Cosserat point is endowed with mass m, and constant director inertias y”/, which satisfy the equa-
tions
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Fig. 2. Sketch of the vectors that define the Cosserat point in its present configuration.

Y0 =1, W=yl # =0 fori,j=0,1,...,5. 4)
Using these quantities, the balance laws for the Cosserat point can be stated in the forms

m=0 or m=pd/*=p,D?,

d | o
alZmy’-’wjlmb’t’ fori=0,1,...,5 (5a,b)
=0
with
t" =0, mb' =mB' +m) +m, fori=0,1,...,5. (6a,b)

In these equations, p is the mass density per unit present volume, p, is the mass density per unit reference
volume, D'/? is the reference value of d'/2, B represent the external forces and couples per unit mass applied
to the Cosserat point by the body force and surface tractions on the lateral surface 0P, m, represent the
director couples applied to the ends OP,, and t" are the intrinsic director couples, which require constitutive
equations. Eq. (5a) represent the conservation of mass, Eq. (5b) with i = 0 represents the balance of linear
momentum, the remainder of Egs. (5a,b) represent the balances of director momentum, and the balance of
angular momentum can be stated in the form

5 5
[di X my”Wj] - Zdl X mbi7 (7)
=0 i=0

&l

5
i=0

where it is noted that the intrinsic director couples t' do not contribute to the supply of angular momentum.

The Cosserat theory parallels the development of the three-dimensional theory in that the balance laws
(5) are valid for all materials. Moreover, the constitutive equations are restricted by requiring the balance of
angular momentum (7) to be satisfied for all materials and all deformations. In particular, it is noted that
with the help of the balance laws (5), the reduced form of the balance of angular momentum (7) can be
written as

5
D dixt=0. (8)
i=1
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Next, by introducing the second order tensor T

5
T=d"'?) twd, ©)
i=1

it can be shown that Eq. (8) requires T to be a symmetric tensor
T =T, (10)

which is a similar result to that of the three-dimensional theory that requires the Cauchy stress tensor to be
symmetric (A.18).

Furthermore, it is convenient to define the kinetic energy, 4" and the rate of work, %" done by external
forces and moments acting on the Cosserat point by the expressions

55 5
1 . )
%':ZZ{Emy”w,--wj], W:Zmb’ -W;. (11a,b)
=0 j=0 =0
Then, the mechanical power, Z can be defined by

d'PP=w — A, (12)

and the balance laws (5) can be used to rewrite this expression in the alternative form
5
d'’Pp ="t w. (13)
=1

In the stress-free reference configuration, the values of d; are denoted by the constant vectors D; and the
three vectors (D, D, D;) are assumed to be linearly independent

D2 =D; xD,-D; > 0. (14)
Moreover, in the following, it is convenient to define the reciprocal vectors D' and d’, such that

D, D =0, d-& =0 forij=1273, (15)
where & is the Kronecker delta symbol. Then, the nonsingular deformation tensor F and its determinant J
can be defined by the formulas
1/2

3
F=>doD, J=det(F) 0, (16)
i=1

and the rate of deformation tensor L can be defined such that

3
F=LF, L=> wed=D+W,
P (17)
1 1
D:E(L+LT) =D, W:E(L—LT) = -W',
where D and W are the symmetric and skew-symmetric parts of L, respectively. Also, it will be shown later

that the quantities B, defined by
p=F'd,—Ds,  p,=F 'ds—Ds, (18)

are strain measures that characterize inhomogeneous deformations of the Cosserat point.
Next, it is desirable to derive an alternative expression for the mechanical power in terms of the variables
L and B,. To this end, it is first recalled that
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F'=-F'L, w; =Ld, fori=1,2,3. (19)
Thus, the material derivatives of B, become

B, =F'(wy,—Ldy), P, =F"(ws—Ldy), (20)
which allow the mechanical power to be expressed in the form

d'"?? =d">T-L+ (F't") - B, + (F't°) - B,. (21)

Furthermore, with the help of the reduced form of the balance of angular momentum (10), this expression
can be rewritten as

d"V?P? =d'’T-D+ (F't") - B, + (F') - . (22)

Moreover, within the context of the purely mechanical theory, the rate of material dissipation & can be
defined by the expression

dPG =d"P’P —mE =W —H —mZ >0, (23)

where X is the strain energy function per unit mass. Also, constitutive equations for T and t’ must be re-
stricted so that the rate of material dissipation remains nonnegative.

It will be shown later that for three-dimensionally homogeneous deformations, the tensor F is equal to
the three-dimensional deformation gradient tensor. This result suggests that it is convenient to introduce
the tensors C and B by the expressions

C=F'F, B = FF", (24)

so that C is similar to the right Cauchy—Green deformation tensor and B is similar to the left Cauchy—
Green deformation tensor. Also, by differentiating these expressions with respect to time and using Eq. (17),
it can be shown that

C=2F"DF, B=LB+BL" (25)

3. Superposed rigid body motions

For a complete theory, it is necessary to discuss how the kinematic and kinetic quantities transform
under SRBM. To this end, it is noted that under SRBM, the position vector dy of the Cosserat point in its
present configuration at time ¢ is transformed to the position vector d; at time /" in the superposed con-
figuration such that

d; = c(r) + Q(t)do, " =t+a, (26)

where ¢(¢) is an arbitrary vector function of time only that characterizes the translation of the Cosserat
point, Q(¢) is a proper orthogonal tensor function of time only

QQ' =1, det Q = +1 (27a,b)

that characterizes rotation, and «a is a constant time shift. Furthermore, by differentiating Eq. (27a) with
respect to time, it can be shown that

Q = QQ7 QT = _97 (28)

where Q(¢) is a skew-symmetric tensor function of time. Also, the director vectors transform by
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d' =Q()d, fori=1.2,...,5. (29)

In these equations and throughout the text, the value of a quantity in the superposed configuration is
denoted by the same symbol as in the present configuration, but with an added superposed (+).

Now, with the help of these kinematical relations, it is possible to determine transformation relations for
all other kinematical quantities. For example, it can be shown that

dt=Qd fori=1,23, B =B,

F'=QF, J'=det(F")=J,

CcC" =, B" = QBQ',

L' =QLQ" + Q, D' = QDQ", W' =QWQ' + Q.

(30)

To determine how the kinetic quantities transform under SRBM, it is assumed that the balance laws
remain unchanged in form. However, to determine how B, t/, m/, transform individually, it is necessary to
make additional assumptions. In this regard, it is recalled that within the context of the three-dimensional
theory, assumptions are made which lead to the fact that the traction vector acting on an arbitrary surface
is merely rotated under SRBM. Thus, for the theory of a Cosserat point it is assumed that the kinetic
quantities transform by

mT =m, Pt =pyg, YT =y, (31a,b,c)
. 5 . . 5 .
B - Zery"”’v'v;r =Q|mB — Zmy’:’v'vj,] (31d)
=0 J=0
t'=Qt, m/'=Qm, fori=0,1,2,...,5 (31e,f)

where Egs. (31e,f) have been motivated by the three-dimensional condition on the traction vector. Also, the
mechanical power 2 and the strain energy function X are assumed to remain unaltered by SRBM

Pt =2, It=3 (32)

4. A nonlinear elastic Cosserat point

For a nonlinear elastic Cosserat point, the strain energy function X is assumed to depend on the variables
(F,B,) as well as on the reference vectors D; and the reference geometry of the Cosserat point. However,
since 2~ must remain unaltered under SRBM, it can be shown that ¥ must depend on F only through the
deformation tensor C. Consequently, for an elastic Cosserat point, the strain energy function takes the form

> =3(C,B,). (33)
Thus, with the help of Egs. (5), (22) and (25), the rate of dissipation (23) can be expressed as
) % | . s | .
d'"?g =d"?|T—-2p0F—F"| . D+ |F't' —m— | - F'tt —m—1| B, 4
9 s + |F't malsl B+ |F't m6ﬁ2 B, (34)

Moreover, for purely elastic response, it is assumed that the kinetic quantities (T, t') are given by functions
(T, t'), which are independent of the rates (D, §,)

T=T, t =t fori=1,2,...,5, (35)
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and that the dissipation 2 vanishes for all deformations so that

B ) ) )

T—Z,r)FaCF7 t'=F maﬁl, tt=F maﬂz. (36)
Also, using definition (9) and the reciprocal vectors d', it follows that

t=[d"’T-tod - ®ds]-d" fori=1,23. (37)

More general material response with dissipation can be modeled by assuming that (T,t') separate
additively into elastic parts (T, t'), which are given by Eq. (36), and dissipative parts (T, £) such that

T=T+T, t=t+F¢. (38)
Then, the dissipation (34) reduces to
Z =T -D+d">Ft) B, +d'"*(F'¢) B, >0, (39)
which is required to be nonnegative. Furthermore, with the help of Eq. (9), it follows that
t=d"’T-t2d -Cods]-d fori=12,3. (40)
As a special case, these dissipative parts can be expressed in the simple forms
T=D"Vn D -DI+2p,D], D=D-{D-DI, D' -I=0,

. . . . 41
@ =m0V (D' -DYF B, € = 0D 2V (D2 D)F T, e

where V is related to the volume of the element (see Eq. (C.9)), D’ is a pure measure of distortional de-
formation rate and the four material constants (1,,#,, 14, 5) must be nonnegative

m=0, =0, =0 ns=0, (42)

in order for the dissipation to be nonnegative for all deformations.

5. Restrictions for homogeneous deformations

In general, the constitutive equations for T and t' in the theory of a Cosserat point depend on both the
material properties of the material that is used to construct the point-like structure and on the specific
geometry of that structure. Even if the strain energy function 2* of the three-dimensional material, which is
used to construct the rod section, is known, it is not trivial to determine the strain energy function X for the
Cosserat point for general deformations. A similar problem occurs in the theories of shells and rods and a
partial resolution of this problem has been developed by Naghdi and Rubin (1995) for shells and by Rubin
(1996) for rods. Following that work, it is observed that if a rod-like structure is constructed from a
nonlinear elastic material that is three-dimensionally uniform and homogeneous, then the constitutive
equations for the Cosserat point theory can be suitably restricted so that predictions of the Cosserat theory
will be consistent with exact solutions of the three-dimensional equations for all three-dimensionally ho-
mogeneous deformations. The objective of this section is to develop these restrictions. Also, in the re-
mainder of this paper, it will be assumed that the material that is used to construct the Cosserat point is
three-dimensionally homogeneous with constant mass density pj.

To this end, it is first noted from Appendix C that the necessary and sufficient conditions for the de-
formation to be three-dimensionally homogeneous require the strains f, to vanish

B, = 0. (43)
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This proves that the strains B, are natural measures of inhomogeneous deformation of the Cosserat point,
as has already been stated. Under these conditions, the three-dimensional deformation gradient F* becomes
a function of time only that is equal to the tensor F defined in Eq. (16) (see Eq. (C.8))

F' = F(0). (44)

Moreover, for homogeneous deformations of a three-dimensionally homogeneous material, the mass m of
the Cosserat point can be expressed in the form (C.9)

m = py7D'", (45)

where V is related to the volume of the Cosserat point in its reference configuration.

Next, by comparing the elastic constitutive equations (36) with the results (C.11) and using Eq. (5), it can
be seen that the Cosserat point theory will be consistent with the three-dimensional theory for all homo-
geneous deformations if the strain energy function X satisfies the restrictions

0%(C,p,) _0x'(C)  E(C.B,) 0x'(C)

oc ac 3B, =205¢

V* for B, =0, (46)

where V* are constant vectors defined by integrals (C.12).
It will presently be shown that these restrictions can be simplified by introducing the auxiliary defor-
mation tensors F and C defined by

F=F(C,p,; V") =FI+p, oV,

. e ; (47)
C=C(C,B;V)=FF=[1+B,2 V] CI+B,® V]
which satisfy the conditions that for homogeneous deformations (f, = 0)
F(C,0; V") =F, C(C,0; V") =C. (48)
Now, provided that the inhomogeneous deformation is never great enough to cause F to be singular
det[I+B,® V’] >0, (49)

it follows that a general form for the strain energy function X can be specified in terms of the three-
dimensional strain energy function X* by the expression

r=2"(C)+ ¥(C.B,), (50)

where ¥ is an additive part of the strain energy due to inhomogeneous deformations that can depend on the
reference geometry. Next, by taking the derivative of X, it can be shown that

0" oy
© o v

B
{T+By oV + 2 < 5

ax*(C) aqf} "

Z:[{]+BM®V°‘} }-C+[2C{I+ﬁﬂ®vﬁ}

) 62*(C)

oY 0 62*(C) oy
o p p o
°c [{I+B ® V*} {I+B, V! +ac} B [2C{I+Bﬁ®V} V+@l3a]'
(51)
Thus, the strain energy function (50) satisfies restrictions (46) provided that
oY oy
3 =0, a—ﬁx =0 for g, = 0. (52)

Moreover, substitution of results (52) into Eq. (36) yields constitutive equations for the elastic parts (T, t)
of the kinetic quantities (T, t’) of the forms
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. _0X(C)=r 0¥ 4]

12 Y pT
d'’T Zm[F s F +F6CF_,

[2Faz( )V1+F-T6—T , (53)

B, |

2 az*( O\ 1 0%
t=m V- +F ,
Y,

where the remainder of t' are determined by Eq. (37).

At present, it is not known how to develop a specific form for the inhomogeneous strain energy ¥ for
general cases. However, as a first approximation, it is reasonable to assume that ¥ is a quadratic function
of the strains B, and the strain E defined by

=3(C-1). (54)

Then, since ¥ must satisfy restrictions (52), it can be shown that ¥ cannot depend on the strain E.
Consequently, the quadratic function takes the form

2m¥ =K (B, @ B,), (55)

where K* are four constant second-order tensors that satisfy the restrictions

(KT = K", (56)

These symmetries indicate that the tensors K* have 21 independent components. Moreover, using this form
it follows that

oY
m
oB,
As a special case, it is of interest to consider a three-dimensionally isotropic material and use the work
of Flory (1961), which defines a nonlinear pure measure of distortion. Then as a simple case, the three-

dimensional strain energy function can be expressed in the form of a generalized compressible Mooney—
Rivlin material such that

= K", (57)

2027 (C) = 2K"[7 = 1 = In(7)] + w'(C - 1-3), (58)

where K* is a material constant related to the bulk modulus, p* is a material constant related to the shear
rnodulus and the pure measures of distortional deformation are defined by the unimodular tensors F,C
and B

F=7"F J=detF, C=F'F, B=FF. (59)
Moreover, it can be shown that
J 1 c.n _ [
Y 1y €D g 2/3[1——(c.1)c 1},
ac 2 oC 3
|
om® é ) = DV2YK [T —1]C ' + D V2yuT [1—§(C-I)C 1} (60)

In general, it is possible to define normalized measures «’ of inhomogeneous strains by the expressions

K =LD' B, fori=12,3, (61)
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where L is the distance between the centroids of the cross-sections 0P, of the Cosserat in its reference
configuration. Then, taking ¥ to be a nonlinear function of these variables

v = P(i), (62)
it follows that

o ow Sl ow .

— = =L D’

oC 0, 0B, Z: Ol (63)
Thus, with the help of Egs. (60) and (63), the constitutive equations (53) reduce to

d'*T =D'?vK* [T — 11+ V' [E’ —%(E’ : 1)1} ,

=Dk [T — 1IF V' + DV2rpT | [ —(C DF ]Vl + LZ (64)

) P . 1
t =D'2IK*[J — 1IF V2 4+ D"2ywT {F 3(C-DF ]V2 +mLZ

For a general quadratic function of the six variables x’, it is necessary to specify 21 material constants.
However, as a special simple case, ¥ can be specified in the form
2m¥ = D2V [k (16) + kay(13)* 4 k(1) + ka (1)) + ks (13)” + ke (@02)” + k(11 12) + kg ()],
(65a)
1 1
o = E(Kf —K), Wy = E(Kf + K3), (65b,¢)
where k; are material constants and the variables w, have been introduced for convenience. It will be shown
that (ky, k,) control bending, k3 controls torsion, (k4, ks) control hour glassing due to extension of the cross-
section, and k¢ controls hour glassing due to shearing of the cross-section of the rod element. The constants
k7 and kg are introduced for later comparison with the expression for the strain energy associated with the
Galerkin approach (Appendix D), but they are set equal to zero for the Cosserat model

Jer = ks = 0. (66)

If the constants k;—k¢ are positive and Eq. (66) holds, then it can be easily seen that function (65) is a
positive definite function of the variables x’. Moreover, it is noted that this expression is consistent with
form (55) when K* are specified by

K'' = D'V [ky(D' @ D') + L(ks + k) (D* @ D*) + k; (D’ @ D*)],
K2 =DV M~k +k)(D*®D")], K =DV [} — ks + ks)(D' @ D?)], (67)
K? = D'?VL*[L(ks + k6) (D' @ D) + ks(D* ® D*) + kp(D* @ D?)].

6. Reformulation of the balance laws

Since the theory of a Cosserat point, discussed in the previous sections, has been developed by a direct
approach, the kinematic quantities D; and d; are not necessarily connected to the kinematic assumptions
(A.1) and (A.4) associated with the derivation from three-dimensions discussed in Appendix A. However,
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for the numerical procedures that will be developed later, it is necessary to connect neighboring Cosserat

points by kinematic and kinetic conditions at their common cross-sectional ends. In this regard (Fig. 2), let

the end 0P, be characterized by the two vectors d,; (¢) and let its centroid be located by the position vector

dy; (¢). Also, let the end 0P, be characterized by the two vectors d,,(¢) and let its centroid be located by the

position vector dg, (). Moreover, let the reference values of these vectors be denoted by D,;, Dy, D2, Dys.
The kinematic assumption (A.1) suggests that the vectors D; are given by

1 1

D, =3 (Do; + Dy2), D; =7 (Dg2 — Do1),
1 1

D, E(Dll + D), D, Z(Dlz — D), (68)
1 1

D, =3 (D21 + Dy), Ds =7 (D2 — Day),

where L is the distance between the centroids of the ends 0P, in the reference configuration defined in Eq.
(B.8). Similarly, the kinematic assumption (A.4) suggests that the vectors d; are given by

1 1
dy =5 (do1 + dg2), d; =7 (do2 — do1),

1 1
d, =5 (diy +dy2), d; =5 (dy +d2), (69)
d, 1(d di), ds 1(d dy).

=7 dn 11 A 21

Also, using these expressions, the director velocities w; can be written in the forms

1 1
=5 (dm + doz) =7 (doz - d01)
1 1
=5 (du + dlz) =5 (d21 + dzz) (70)
1 1
(dlz - dn) (dzz - dzl)

The constitutive equations discussed in Section 5 are valid for general nonlinear deformations and they
produce exact results for all homogeneous deformations. The specification, Eq. (68), is valid in general and
specification (69) is consistent with exact results for all nonlinear homogeneous deformations. Moreover,
Eq. (69) is valid for large displacements and rotations. Also, it will be shown that Eq. (69) produces rea-
sonably accurate results if the inhomogeneous deformation is relatively small. However, large overall in-
homogeneous deformation of the rod can be described if the rod is modeled using a sufficiently large
number of elements.

From the kinetical point of view, it is noted that the assigned fields b’ in the momentum equation (5b)
separate into two parts Eq. (6b): one part B’ due to body force and surface tractions on the lateral surface
0P of the rod section, and the other part (m{ + mj) due to surface tractions on the ends 9P, of the rod
section. Moreover, in view of the definitions in Appendix B, the director couples (m},m?, m) are related to
the quantities (m), m?, m?) by formulas (B.8). This means that the balance laws Eq. (5b) can be solved for
the vectors (m!, m2, m?) and rewritten in the forms



4408 M. B. Rubin | International Journal of Solids and Structures 38 (2001) 43954437

1 _L 5 5
0 _ 0 0 3 3, 43
ml—z E{;my/w—mB}—{Zmyfw—mB —i—t} ,
m) _LL 5 my”w; Zmy3’w —mB +¢
L2\ &
m :l é ° myl(/'w _mBl +tl Zmy‘Uw —mB4+t4
L2 & ’
- : (71)
LS L 1 4l 4j 4 | 4
mZ:Z 5 j:Omy w,—mB 4+t >+ Zmy w, —mB*+t" 5|,
m’ :l L 5 myz‘/w —mB? + ¢ Zmysfw —mB +t
L2 /:0 / ’
2 1L 2y 2, 2 5, 45 ]
m; =713 /:Omy —mB”+t Zmy —mB’ +t .

For the special case of equilibrium (w; = 0), with no body force and no surface tractions applied to the
lateral surface of the rod section (B’ = 0), these equations simplify to

1 1
m(l):—zt37 mgzzt3,
1 1 1 1
m| :Etl —Zt“, m} =§tl +Zt4, (72)
1 1 1 1
m%zztz ZtS, m§:§t2+zt5

7. Boundary conditions

From the point of view of the direct approach to the theory of a Cosserat point presented in Sections 2
through 5, the balance laws are written in terms of ordinary differential equations, which are functions of
time only. Consequently, the solution of these equations requires initial conditions and not boundary
conditions. However, the objective of this paper is to use a number of connected Cosserat points to model
the motion of a rod, which requires boundary conditions on its ends. Moreover, in order to connect
neighboring Cosserat points, it is necessary to discuss kinematical and kinetical conditions at the ends 0F,.

The nature of these boundary conditions are determined by examining expression (11b) for the rate of
work done on the Cosserat point. Specifically, formulas (6b), (70) and (B.8) are used to rewrite Eq. (11b) in
the form

5

ZmBi W

i=0

W = +{m?'dm-l-mi'dn-&-m%'dzl}+[mg'doz+mé'dlz+m§'d22~ (73)

It then follows that the boundary conditions on the ends 0P, are determined by

specifying {dy; or m!} and {d;; orm|} and {dy orm’}  on P, o,
74
specifying {dy; or m)} and {d;; orm}} and {dy or m3} on OP;,.
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Obviously, mixed conditions and mixed-mixed conditions can be formulated where some components of
the kinematic quantities and other components of the work conjugate kinetic quantities are specified.

Also, the moments m, applied to the ends 0P, about their centroids are determined by Eq. (B.9) and can
be expressed in the forms

L L
m; = <d1 —2d4> x m] + (dz —2d5> xm] on 0P,
(75)

L L
m; = (dl +§d4) X m; + (dz +§d5> X m% on @P2

Thus, in addition to specifying the forces m?, the boundary conditions (74) require specification of the
couples m! and m?, which contain more information than the moment m,.

8. Determination of constitutive coefficients for beams

In this section, attention is confined to the simple case where the rod, in its reference configuration, is a
straight beam with a constant rectangular cross-section. With respect to the fixed orthonormal base vectors
e; of a rectangular Cartesian coordinate system, the vectors Dy, D,;, Dy, D,, are given by

Dy =0, D, =e,, Dgp=1Les, D,=e, (76)

where L is the length of the beam. Also, the three-dimensional region of space occupied by the beam in its
reference configuration is characterized by

H w

>SS, 0<0'<L, (77)
2 2

where 0 are convected coordinates, H is the height and W is the width of the cross-section. It then follows
from Eq. (68) that the directors D; are given by

L
Dp=7e, D.=e, Di=e;, Dy= 0, Ds=0, (78)
so the directors D, align with the principal directions e, of the cross-section.

Moreover, the material is assumed to be elastically isotropic, with the strain energy function being given
by Egs. (50), (58), (65) and (66), and attention is confined to equilibrium so that the effects of dissipation
(41) vanish. For this geometry, it follows that D'/, V in Eq. (C.9), and the vectors V* in Eq. (C.12), are
given by

D' =1, V=LHW, V*=0, (79)

10" <

so constitutive equation (64) reduce to

T=VK'[J - 1I+J vy [B —%(B : 1)1} ,

t' = VL[k(xc))d" + (ko1 + ke2)d® + Ky (i) 0] 0

£ = VL[ — ko + kewo)d' + ks(k3)d” + ko (13)d’] .

In order to investigate the nonlinearity of these constitutive equations for uniaxial stress in the e; di-
rection, it is convenient to specify

dy; =0, dpy = Asle;, dip = Aier, dip = diey, dy = /ey, dyn = Aes, (81)
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where /; and 1, determine the stretches of the cross-section and A3 determines the axial stretch. It then
follows from Egs. (16), (18), (61) and (69), that

1
dy = 5131463, di = die, dy= /ey, dy=/ze3, dy=0, ds=0,
F= /11(61 X el) + ;»z(ez ® 62) + 13(e3 ® 63), J = 1122/137 (82)
K=K =K =K =0 =0 =0.

Thus, constitutive equation (80) become

1
T=VK[J - 1]+ gﬂﬂ V{23 — 5 —iat(e @ ep) (83)

{2428 - e @e) + {2 -2 4+23 es®es)], tt=t=0.
Also, it is convenient to introduce the engineering strains ¢ and the volumetric strain ¢, by the formulas
g=A4—1 fori=1,273 & =J— 1. (84)
Now, for uniaxial stress in the e; direction, the boundary conditions at the ends 0P, are specified by

ml=-P, m=0 m=0 m=0, (85)

0_ 1_ 2 _ _
m=P, m=0 m;=0 m=0,

where P is the force acting on the ends and use has been made of definition (75) for the moment m,. It then
follows that, in the absence of body forces and surface tractions on the lateral surface of the rod element,
equilibrium equation (72) require

tt=0, =0, 2=LPe;s, t'=0 t=0. (86)
Thus, with the help of Egs. (37) and (83), these equations yield
1
M=l  KJ—-1]+ 5./*2/3#*(;3 —23) =0,

P 1 2 14
—=— |K'(J =)+ B3 -2 A=—=HW
A ;LS (J )+3J .u(3 1)? L )

(87)

where A is the reference cross-sectional area. Moreover, for homogeneous deformation, it follows from Eq.
(B.7) that the three-dimensional Cauchy stress T* is related to T by the expressions
1 MLP P
T =—T =T -(s0e)=—=—. 88
JV ’ 33 ( 3 ® 3) JA )\,TA ( )
By specifying /; and solving part two of Eq. (87) for 4, it is possible to determine the response to uniaxial
stress. For the specific numerical example to be discussed in the rest of this paper, the material constants are
specified in terms of u* and Poisson’s ratio v* such that

2 (1+v7)

*=10 GP. *=0.2 K'=——2
u 0 GPa, v =0.25, 30 —2v)

E*=2u" (1 4+v). (89)
These values were chosen for simplicity and they do not correspond to any particular material.

Fig. 3(a) shows that the normalized Cauchy stress 73;/E*4 (true stress) and the normalized engineering
stress (P/E*A) are both nonlinear functions of the engineering axial strain &. Also, Fig. 3(b) plots the
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Fig. 3. Solution for uniaxial stress in the axial direction showing (a) the normalized Cauchy stress (73;/E*) and normalized engineering
stress (P/E*A4) and (b) the lateral engineering strain ¢, as functions of the axial engineering strain &;.

engineering lateral strain ¢;. In particular, notice from Fig. 3(a) that the change in cross-sectional area
causes a softening effect for P during tension and a stiffening effect for P during compression.

It will presently be shown that the constants (k;,k,) can be determined by considering pure bending of
the beam, and the constant k; can be determined by considering pure torsion of the beam. To this end, first
consider the problem of pure bending when the beam is bent into a circular arc with d;, and d,, given by

d()] = 0, d02 = }v3L[Sil’l (ﬁ/2)e] + cos (ﬁ/Z)e3],

dip = Aie = [ﬁ}eu di> = y[cos fe; — sin fes], (90)

dy = /ey, dyn = /e,

where 4y, 4y, 43 are stretches to be determined, f is the angle defining the arc of the circle made by the
centroid of the bent beam, and the quantity 4; has been introduced for convenience. Now, using definition
(69), it can be shown that

d() = %lj;lleg, d] = Zle'], d2 = )»202, d3 = )L3e’3, d4 = 72A1ta+(ﬁ/2)eg, d5 = 07
¢| = [cos (B/2)e — sin(B/2)es], & = [sin(B/2)er + cos(B/2)es], (1)

where the unit vectors €| and €} have been defined for convenience. Moreover, using these results, it follows
from definitions (16), (18), (61) and (65) that

F=/€ @e + /1e; @ e, + /3¢, ® e3, J = Jilals,
s 2jtan(B/2) (92)

1_ 2 3 _ o _
K=K =k =0, w; =w; =0, K] = —n

Thus, constitutive equation (80) become

1 . I . A
T= 1KY — 1Jl+37 7 v 27, - - A (¢ @) + 27| =T+ 275 - HICED

1 —
+§Iz/s Vi { _ Af -2+ 2)@} (¢, ®e)), ®3)
3
A3 )

Now, for pure bending, the boundary conditions at the ends 0P, are specified by
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1 2
m; =0, m :I—e37 m; =0, m =—Me,,
1
u (94)
0 1 /
m, =0, mzz—z—e37 m; =0, m, =Me,,
1

where M is the magnitude of the moment and use has been made of definition (75) for the moment m,. It
then follows that, in the absence of body forces and surface tractions on the lateral surface of the rod
element, equilibrium equation (72) require
LM
tt=0, =0 =0, t'=-"—¢;,, £=0. (95)
gl
Thus, with the help of Eqgs. (37), (93) and a specification of 8, these equations yield four scalar equations for
the four unknowns (4, 4, A3, M)

—_ 1 —
h=ly  K'J-1]+ §J‘2/3u*[ﬂf ~ )2 =0,

)
. 2 o 2 4k A, tan®(B/2
KU =1 =30 - 7] = ) %
3

_ 2W7 tan (B/2)

M
2
i

Next, assuming that the centroids of the ends 0P, lie on a circle of radius r it can be shown that

=2
) L B VLky 2, 1
sin(B/2) = 2r N [/13005(,8/2) r 67
Thus, neglecting quadratic terms in f, the linearized solution of Eq. (96) yields
= , L L
/L1:)ul:/L2:A,3:1, ﬁ:;, M[Wﬂ];:[wcl]ﬁ (98)

Now, a similar expression for the moment can be obtained using the linearized three-dimensional theory for
pure bending of rectangular bar

EH3W 1 EH>W
M = - = 99
e )
where E* is Young’s modulus. This suggests that coefficients £, and &, are given by
E*H? EW?
k=157 2= T (100)

where k, is determined by analogy for bending in the e,—e; plane. Moreover, neglecting quadratic terms in
B, Egs. (90) (second part), (98) and (100) yield

6ML?

= | — L 101
do> {E*H3W}el + Les, (101)
which can be shown to reproduce the correct value of the vertical (e;) displacement.

The numerical solution of general rod problems will be discussed in Section 9. However, it is possible to
numerically solve the problem of pure bending of a beam of reference length L, by merely dividing the

beam into N equal segments, each of which is subjected to pure bending. In particular, consider a beam
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which is bent into a complete circle. Modeling each of the elements as a Cosserat point and using nonlinear
equations (96), it is possible to define the length L and angle /5 for each of these elements by the expressions
Lo 27
L == = 102a,b
o b= (102a,b)
Moreover, it is convenient to define the normalized moment M such that

6LM N7, tan(n/N)

M = FWa v . (103)
Next, with the help of Egs. (92) (second part) and (102), Eq. (96) (second and third part) can be rewritten in
the forms

_ 12 =2/3 % _

7= - . J—1= {J3K*" }(;g_zf). (104)

7 - [ £ [ N2 an2 (/)

Consequently, these equations can be solved by specifying a value for N, guessing a value for A3, then
calculating Z; and iterating on the guess for /3 until Eq. (104b) is satisfied. Moreover, in determining the
geometry of the beam, it is convenient to estimate the radius r of the middle line of the deformed beam by
assuming that this middle line does not extend so that
r ~ L()
H™ 2nH’
Thus, for Ly/H = =, the beam would be bent into a solid cylinder.
Fig. 4 shows the convergence of quantity (103) for different values of Ly/H. In particular, notice that for
Lo/H = 100, the beam is quite thin and the normalized moment M converges to the value unity, which is
consistent with the moment that would be predicted by describing each section of the beam with the lin-
earized theory. Whereas, for thicker beams, the moment converges to a value less than that predicted by the
linearized theory. This weaker response to bending seems to be caused by the effects of axial extension
(&5 > 0) and cross-sectional contraction (¢ < 0,¢&, < 0). Also, notice that the convergence is fairly rapid so
that not many elements are needed to accurately predict the solution of this large deformation problem.
In order to determine the value of 43, it is convenient to consider the problem of pure torsion of a straight
beam about its axis. For this problem, the kinematics are specified by Eqgs. (76)—(78) and

dy; =0, dy, = A3Le;3,

(105)

A .
dy = /e = [W}el, d;; = A[cosye; + sinye,], (106)
dy = hey = L e dy, = A,[—sinye; + cosye;]
21 = A€ = c0s (7/2) 25 2 = /A2 €1 y€2],

where 41, Z,, /3 are stretches to be determined, y is the angle defining the twist of the beam and the
quantities 4;, 4, have been introduced for convenience. Now, using definition (69), it can be shown that

1 - - 2/, tan(y/2
d() = 5/131493, d1 = ile/l, dz = )Qe'z, d3 = )»303, d4 = %e;,
2/, tan (y/2 : )
ds = —%@/)e’l, e) = [cos(y/2)e; + sin(y/2)e,], e, = [—sin(y/2)e; + cos(y/2)e],

(107)
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Fig. 4. Bending of a beam of reference length L, and thickness H into a circular ring showing the strains ¢;,&,¢3,6, and the normalized
moment M.

where the unit vectors €| and €}, have been defined for convenience. Moreover, using these results, it follows
from definitions (16), (18), (61) and (65) that

F:Ilell ® ey +12e’2®e2+i3eg®e3, J = Jylala, Ki :Kg = K? :K; =0,

o o (108a,b)
o = [_—14—7—2} tan(y/2), Wy = {——1———2] tan (y/2).

lz Al L2 A

Thus, constitutive equation (80) become
* 1 -2/3 «[r72 72 2 ’ / 1 -2/3 * -2 52 2 / /
T= K'Y — 11+ P 27 - »2—23](e1®e1)+§‘/ V| =7+ 2% - (€ @)

1 o
+377 e (=71 =7+ 28 (e @),

¢ — |:I/Z‘(k3wl_+ kswz)}e, ¢ [Vl(k3a)l+k6w2)]e/.
2}*2 > 211 !

(109)

Now, for pure torsion, the boundary conditions at the ends 0P, are specified by
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0 r / T

m;, =0, m=—-—¢e, m =—¢,, m; = —Tes,
! ! 27 ok, ! : }
T T (110)
md =0 m = _—¢ m=——¢ m, = Te;
2 ’ 2 2/L,] 2 2 212 P ,

where 7 is the magnitude of the torque, and use has been made of definition (75) for the moment m,. It then
follows that, in the absence of body forces and surface tractions on the lateral surface of the rod element,
equilibrium equation (72) require

LT (111)

tt=0, £=0 =0 t'=—"Z0¢), tt=-—"0c¢
25

Thus, with the help of Egs. (37), (109) and a specification of v, these equations yield four scalar equations
for the four unknowns (4, 43, 43, T)

_ 1 _
=T, KV-1430w [}f - zﬂ — 2k tan’(y/2),

5 ) (112)
K'Y —1)-577w [Zl - zg} =0, T =2Wtan(y/2).
Next, neglecting quadratic terms in v, the linearized solution of Eq. (112) yields
E1212:/11:/12:13:1» T = Vksy. (113)

Now, a similar expression for the moment can be obtained using the linearized three-dimensional theory for
pure torsion of rectangular bar

@, | H
T = 1 . =—H ——

192 2n—n
g(n) [ ’”IZ (2n—1 tanh{i( o ) }]7

where I, is the effective polar moment of the rectangular cross-sectional area (Sokolnikoff, 1956). Physi-
cally, it is clear that there can be no preference in the mathematical expression for either of the directions in
the cross-section so the function g(y) must have the property that

g(n) =g(1/n). (115)

This restriction can be proved by expanding the hyperbolic tangent function in terms of power series
(Gladwell, 1998). Now, comparison of Egs. (113) and (114) yields
wil, wHW
ks = = . 116
Y=L~ a8 (116)
It is possible to numerically solve the problem of pure torsion of a beam of reference length L, by merely
dividing the beam into N equal segments, each of which is subjected to pure torsion. In particular, consider
a beam with square cross-section (H = W) for which its ends are twisted relative to each other by an angle
of 2n. Modeling each of the elements as a Cosserat point and using nonlinear equation (112), it is possible
to define the length L and angle y for each of these elements by the expressions
L 2
L= —O, Yy = —n.
N N
Moreover, the strains ¢ and &, can be defined by Eq. (84), and the normalized torque T can be defined by

(114)

(117)
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— T N T
T = Smee = 7 @0y (118)
3Ly

where use has been made of Eqgs. (112), (114) and (116) with H = W. Next, Egs. (112) (second and third
part) can be rewritten in the forms

4,u*H2g(1)] 2., 2f T

J=1+ [7 N tan?{ — |

9K*I2 {N} (1195, )
=2 2°8H?g(1)] ,. (™ ’
Al—ﬂg—&-[ 302 N-tan {N}

Also, multiplying Eq. (119b) by A3 and using Egs. (108b) and (119a), it can be shown that Eq. (119b) yields
the cubic equation

212/3H2g(1)

oF (120)

i) [want{ £} =0
to determine /3. Thus, for specified values of Ly/H and N, Egs. (119) and (120) can be solved for 4; = 1, 13
and J. Then, Eqgs. (106) (third part) and (118) can be solved for A;, A, and 7.

Fig. 5 shows the convergence of the strains (84) and the normalized torque 7 (118) for different values of
Lo/H. In particular, notice that T is independent of the value of Ly/H and depends only on the number of
elements and the relative twist between the ends of the beam. However, the values of the strains are in-
fluenced by the value of Ly/H.

The material constants (k4,ks,k¢) are needed to control hour glassing of the deformation. In particular, it
is noted that the varying shape of the cross-section of a bar hanging under its own weight is similar to the
hour glassing mode of deformation associated with cross-sectional extension. However, in contrast with
that problem, where the stress is uniaxial in the direction of gravity, the response in Eq. (80) due to cross-
sectional hour glassing (k] # 0, x3 # 0) is related to variation of stresses acting on planes, whose normals
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Fig. 5. Torsion of a beam of reference length L, and square cross-section (with thickness H) showing the strains ¢ = &, €3, &, and the
normalized torque 7. The ends of the beam are twisted by an angle 2 relative to each other.
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are perpendicular to the direction of gravity (Eq. (B.5)). Consequently, comparison of the response (80) for
this problem with the three-dimensional solution would indicate that k4 and ks vanish. Therefore, at
present, it seems reasonable to specify values for these constants that are large enough to control hour
glassing and yet small enough to cause insignificant influence on the other modes of deformation. Thus, for
simplicity, these constants are specified by

[ H? w2 [HW

where k is a small constant (k =~ 0.001).

For comparison purposes, Appendix D outlines the usual Galerkin procedure for determining the re-
sponse of a rod-like element. Specifically, a kinematic approximation is substituted into the three-dimen-
sional strain energy and the result is integrated over the region of the element. This effectively determines
the constitutive equations for the rod-like element, which are different from those developed above for the
Cosserat theory. The reasons for these differences, and the need for special approximations like (D.11), are
related to the use of the kinematic assumption pointwise in the cross-section (Rubin, 1996; O’Reilly, 1998;
Zienkiewicz and Taylor, 1991, p. 161).

Next, attention is focused on the determination of the mass m and director inertia coefficients y” of the
Cosserat point. For the simple case of the beam characterized by Eqs. (76) and (77), and with the as-
sumption that the reference mass density p;, is constant, it can be shown that Eq. (B.1) yield

m=pyV, V = HWL, YW =1, (122)
11:H_2 yzzzzz y33:L—2
12° 12° 12’ (123)
H*IL? w2L? -
M — m, ySS = W, all other yl‘] =0.

The values (123) are consistent with values that would be obtained by direct integration of Eq. (B.1).

However, it has been shown in (Rubin, 1986) that the predictions of free vibrations of a rectangular

parallelepiped can be improved if y'!, y??, y3 are specified by
n_H? n_ W w_ L

= = Y

(124)

g ) =
In this regard, the director inertia coefficients represent information about vibrational mode shapes and do
not merely characterize the distribution of mass in the Cosserat point.

To determine improved values for y* and y%, it is possible to consider the linearized problem of free
bending vibrations of the beam. For this problem, it is convenient to neglect quadratic terms in the bending

angle f and specify d;, by
do; =0, do> = Le;,

di; =e + (f/2)e;, d, =¢ — (f/2)e;, (125)
dy = ey, dy = ey,

so that Eq. (69) yield
d0:§e3, d =e, d; = e, d; = es, d4:—§e3, d; =0. (126)

Moreover, using these results, it follows from definitions (16), (18), (61) and (65), that
F=1 J=1, xi=x3=13=0, Kki=- o =w=0. (127)
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Thus, with the help of Eq. (100), constitutive equation (80) become

E*H>W
12

T =0, t“:-{ ]ﬂe3, = 0. (128)

For free vibrations the boundary conditions require
m'=0, mi=0 m=0, (129)

so that, in the absence of body forces and surface tractions on the lateral surface of the rod element, the
equations of motion (5) yield a single scalar equation of the form

my44 .. ExHSW B
[T]ﬁ [ 12 ]ﬁ_o’ (130)

where use has been made of expression (70). It then follows that the natural frequency Q for free—free
symmetric bending vibration of the beam is given by

o [EH L

205 |
However, it can be shown (Graff, 1975, Section 3.2) that the frequency Q* of the lowest nontrivial free—free
symmetric bending mode of a Bernoulli-Euler beam is given by

(131)

EH|[K]
Q*Z _ - 132
ell2] (1)
where K is the smallest nonzero positive solution of the equation
cos(K)cosh(K) =1, K ~4.730 ~ (1.004) {37“} (133)

Thus, comparison of expressions (131) and (132) suggests that the director inertias y* and y°°> can be
determined so that the single element predicts the correct lowest natural frequency for bending in either the
e;—e; plane or the e,—e; plane by specifying

L1t raet
PR S e PO el 134
yi=y { K} {3 n} (134)
It is particularly interesting that the value of y* is independent of H, the value of > is independent of W,
and that these values are different from those of fourth and fifth part of Eq. (122) obtained by direct in-
tegration.

9. Numerical solution procedure for rod problems

As described in Section 1, the numerical solution procedure for rod problems is formulated by dividing
the rod into N elements, each of which is modeled as a Cosserat point. Fig. 1 shows the kinematics of the
Ith Cosserat point. With respect to the present configuration, the vector ,d; locates the centroid of the /th
cross-section and the vectors ,d} and ,;d; characterize material fibers in this cross-section. The values of these
vectors in the reference configuration are given by ;Dg, ,Dj, /Dj.

In the previous sections, it was shown that an elastic rod-like Cosserat point is characterized by the
kinematic and kinetic quantities
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{L,D;,d;,w;,m,y7 X ¥ ¢ B m} m), m,m,}, (135)
where the directors D; and d; are related to the kinematic quantities
{Do1,D11,D51, D02, D12, D12},

{d()l ) dll ) d21 ) d023 dlZa d22}?

(136)

by Egs. (68) and (69). Also, the director velocities w; are given by Eq. (70). Here, it is convenient to identify
the kinematic and kinetic quantities associated with the Ith Cosserat point using the same symbols as Egs.
(135) and (136), but with a subscript I. Thus, the Ith Cosserat point is characterized by the quantities

ij i i i i
{IL;IDivldi;Iwialmﬂyjalzﬂlpalt /B ,,ml,,m2,1m17,m2}7
{IDOI71D1171D2171D02)1D]271D22}7 (137)

{1d017Idlla1d2131d0271d12>1d22}'

For example, the vectors ;D;, ;d;, ;w;, ;m’; and ;m,’ are given by formulas (68)—(71), with a subscript I placed
on all quantities in those formulas.

The equations of motion for the /th Cosserat point are coupled with those of its neighbors by specifying
kinematic conditions at the common cross-sections of the forms

* * *
1d01 = 1d07 Idll :1d17 1d21 :1d27

Ay = 1+1d3, i = 1+1df, My = 1+1d§ for/=1,2,...,N. (138)

Also, kinetic coupling is introduced by using Newton’s third law to require the forces and couples applied
by the Ith element on the (/-1)th element to be equal in magnitude and opposite in direction to those
applied by the (/-1)th element on the /th element

fmb+m} =0 for/=23,...,N andi=0,1,2. (139)
Moreover, the boundary conditions are determined by specifying

{id; or m{} and {,d; or ym;} and {,d; or ymi},

{xyad; or yyymd} and {y.d; or y,ym)} and {y.id or y,m3}. (140)

Again, mixed conditions or mixed—-mixed conditions can be specified without difficulties.

By way of example, it is of interest to consider the case of a beam with rectangular cross-section for
which the director inertia coefficients are given by Eqs. (122), (124) and (134), with subscripts 7 attached to
each term, and the remaining values of ;¥ vanishing. Moreover, using expression (70) and kinematic
coupling conditions (138), it follows that

1 [ [ 1 T Tk 1 T* 1+
Wo =5 [zdo + 1+1do}7 Wi =35 [ldl + 1+1d1], W2 =5 [zdz + 1+1d2},
141
W3 = I [lﬂdo - Id():|7 Wy = I [lﬂd] - ldl], [Ws = I [Hldz - 1d2]~

Then, Eq. (71) become
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m) = m % +’1)2—323]1&S + m H - Ii—f}m&g - % [im;B°] + ,lL [im;B?] — ,iL it],
md = ;m % — '1)2—323]1&2; +m H—I—i—t}mds - % [imB°] — ]lL [;m; B’ +%L[1t3]7
m! = m %4‘% (Al + m % —%:IH&T —%[,m,B‘] +ILL[1M1B4] +%[1t1} _[%[ltﬂ’
- - - _ (142)
m? = m % +Il);—525 (5 + m % — 1})/; rds — % [;m,B’] +ILL[,m,B5] +%[1t2} _ILL[ItSL
m2 = m % - ’[}11—525 (d; + m %_i_z[yg rad; — % [;m,B*] — ,lL [/m/B’] +%[1t2} +ILL[1tS}'

To analyze the results of a particular problem, it is convenient to define the forces and couples ;m*, ;m'*,
/m?>* applied to the Ith element (on its cross-section, which has an outward normal vector that makes an
acute angle with the vector ,d;) using the expressions

0 0 1% 1 2% 2
m = —my, m = —my, m- = —mj,
0% 0 1% 1 2% 2
m” = ;_m, m’ =, jm,, m- =, m; for/=2,3,...,N+ 1. (143)

In these definitions, minus signs have been used for (;m*, ;m", ;m*) to take into account that the end ;0P*
has an outward normal, which makes an obtuse angle with ;d;. Furthermore, it is convenient to use Egs.
(75) and (143) to define the moments ;m* by the expressions

m =, x ;m" +,d x ;m* for/=12_... N+1. (144)

Now, substitution of Eq. (142) into kinetic coupling equation (139) yields 3(N — 1) ordinary vector
differential equations for the 3(N + 1) unknowns ,d;, ;d}, ;d;. Six additional vector equations are obtained
by boundary condition (140). Moreover, since these differential equations are second order in time, they
require initial conditions for the quantities

{dy, d}, 3}, {133,137,133} at 1 =0. (145)

For the special case when the beam is uniform in its reference configuration and it is divided into ele-
ments of equal length L, then the subscript I can be omitted from the quantities L, m and y” so that

L=1L, m=m, =) (146)

Moreover, for this case, the 3(NV — 1) vector kinetic coupling equation (139) can be written in the forms
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¥ i Loy . 1 y¥ S 1 0 0 1 3 3
I 1y +2 Z+F 4y + Y dy | +m _E{I—IB +1B}—Z{1713’—IB}

44

+
ro 44 11 1 44
yooy vyt s yooy 1 1
m_{4L2}Hd1+2{4+L2}d1+{4L2}1Hd1}+m{2{1_]B1+1B1}L{HB41B4}}
+
+

{iat 4t} +%{Ht4 —,t“}} =0,

55

. 12y . 25 . 1 R 5 1
T——z},_ldg+2{7+ﬁ},d§ +{ —F}Mdg} +m{—§{1_1B +,/B }—Z{,_IB5 —IBS}]

-lk‘k:

1 1
[5{1 — 18 4 ,t°} +Z{Ht5 - ,tS}} =0 for/=2,3,...,N.
(147)

Then, with the help of Eqgs. (142) and (143), the forces and moments become

o — —m%—l—)]ii}d _m[%_g]zag +mB{IBO} —%{133}] 1)
m=—m :)%l—i-)g} & —m %—yLi;zd’{ +m :%{131} —%{134}} - [%{ﬁl} —%{1t4}]7
i IR
m” = m % —Jg},]aé +m [%4—%]1&3 —m B{HBO} +%{1133}] +% [Hﬁ]»
=l S e B+ [+ ()],
m® = m J;J;}d m y4 +yLd m :;{,132} n i{,IBS}} n [;{“ﬁ} +i{,1t5}]
for/=2,3,...,.N+1.
(148)
Also, the six vector equations characterizing boundary condition (140) are determined by specifying

{id; or m*} and {,d; or )m"”} and {,d; or ;m*}, (149)

{xu1d; or yyym*} and {y.d} or yyym"} and {y.d; or y,m*}.

In particular, it is noted that Egs. (147) and (148) have the usual tridiagonal symmetric form for the mass
matrix used to determine the accelerations of the directors {,d;, ;dj, ;d;}. Also, it can be seen from Eq. (147)
that, if »*,y* and y*° are specified by

33 L a4 _ Ly yss Ly?

(150)

- Z ’ Yy 4 ) = 4 )
instead of the values in Egs. (124) and (134), then Eq. (147) are diagonalized in terms of the accelerations.
However, such a specification causes an increased number of elements to be used for the same accuracy.
Specifications of the director inertia coefficient of this type were considered previously (Rubin and Gottlieb,
1996) when modeling the dynamics of strings.
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10. A nonlinear example problem

As an example, consider the problem of a uniform cantilever beam (of rectangular cross-section), which
is deformed in the e;—e; plane by a force applied to one of its ends (Fig. 6). The length of the beam in its
reference configuration is taken to be Ly and the beam is divided into N equal segments so that the length L
of each segment is given by
=5
In the absence of accelerations, body forces and tractions on the beam’s lateral surface (IBi = 0), kinetic
coupling equation (147) require

L (151)

1
I [t — ] =0,

1 1
E{I—ltl + '} +Z{1—1t4 - 1t4}} =0, (152)

1 1
[5{,_1t2+,t2}+z{1_1t5 —,tS}} =0 forl=23,...,N.

Also, expression (148) for the forces and moments reduce to
1 1 1
1m0*=Z[1t3]’ 1m1*=—{§{1t1}—z{1t4}}
24 1, 1,5
™ = oGt} - Lt
(153)

1 ! !
Imo* :Z[liltgj]’ Iml* = |:§{11t1}+z{11t4}:|’

1 1
1m2* = |:§{[1t2}+z{11t5}:| f01‘1:2,3,...,N+1.

Since the centerline of the beam remains in the e,—e; plane, the kinematics are specified by the 5(N + 1)
variables (;xj, x5, /0, /A1, 142)
Ay = xle +xies,  d) =l [cos(;0)e; — sin(;0)es),

154
iy =,4e, forl/=1,2,...,N+1 e

Also, in the reference configuration, these variables are given by
(/ — 1)Ly
N )

*

ko p—
X = 07 X3 =

1/11:17 1920, 112:17 forI=1,2,...,N—|—l. (155)

€
//

Fig. 6. Sketch of a cantilever beam ‘“‘clamped” at one end and loaded by a force P acting at an angle « at the other end.
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Now, the boundary conditions are specified by
x; =0, x;=0 m"-e=00=0 M- e =0,
yvom” - e; = Psin (), yim™ - ey = —Pcos(a), (156)
N+1m1* -e; =0, N+1m1* -e3 =0, N+1m2* e, =0,
where the magnitude P and angle o characterize the force applied to the end / = N + 1. In particular, notice

that the cross-section at / = 1 is not allowed to rotate and its center is held fixed but the cross-section is
allowed to change its dimensions (since ;4; and |4, need not remain unity) so that it is only partially

“clamped”.
For this problem, Eq. (68) with subscript I yields
D1 =ey, Dy = ey, D3 = e, Dy =0, Ds =0, (157)

and Eq. (69) with subscript 7 yields expressions for ;d;

1 * * 1 * *
o = = [idg + 10dg), s = —[ady — dg],

2 L
1 * 1 * *

A = 3 [d] + 7], s = I [rd] — di], (158)
1 * * 1 * *

1y = 5 (145 + ad3], s = 7 11145 — d3).

Also, with the help of Egs. (16), (18), (24), (37), (61), (65) and (80), the relevant kinematic variables are
given by

F=d®e +d®e +,d; ®e;, = dy X dy - gd3,

B = FF, B = F 'y, B, = F s,

(159)
IK?:eTIﬁla IK% =e /Py, IngeZ'lﬁza
o1 =0, 1 =0,
and the constitutive equations become
1
/T =VK* [\ J =11+, vy {,B - §(,B . 1)1] :
(160)

1t = VLIka (i) 4" + Ky (167 0], 1t = VLIks(;13),4%],
]ti: [[T*]t4®1d471t5®1d5]'1di for i = 172737
where ;d'(i = 1,2,3) are the reciprocal vectors of ;d;.

Moreover, for the example problems to be considered, the values of p* and v* are specified by Eq. (89),
and the values of &, ky and ks are given by Eqgs. (100) and (121), with k& being specified

k =0.001. (161)
Also, to emphasize the influence of shear deformation, the beam is taken to be reasonably thick with
Ly=1m, H=W=0.1 m, A=HW =0.01 m>. (162)

The computer code MATLAB was used to program the equations in tensorial form and the subroutine
fsolve was used to solve the 5(N + 1) scalar equations characterizing equilibrium of planar deformation of a
rod with N elements. Moreover, the initial guess for the equilibrium configuration was determined by
solving the equations of an elastica, which are reviewed in Appendix E.
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Fig. 7. Cosserat solutions for uniaxial stress for P/E*4 = 0.3. The correct solutions for (a) tension and (b) compression are obtained
using £ = 0.001 and the solution for (c) compression with hour glassing is obtained using £ = 0. The number of elements N = 10 is
taken for ease of interpretation because the unstressed elements are square.

Fig. 7 shows the solution for uniaxial stress with a nominal load P, which for the linear theory would
cause 30% extension (Fig. 7(a) with o = 180°) or compression (Fig. 7(b), (c) with o = 0°). Since the solution
is associated with uniform deformation, a single Cosserat point will reproduce the exact solution. However,
10 elements have been used to emphasize the change of axial and lateral dimensions of the Cosserat theory
relative to the unstressed reference configuration, where the elements would be square in these plots. Fig.
7(a) shows that the rod extends more than 30% since the cross-section contracts, and Fig. 7(b) shows that
the rod contracts less than 30% since the cross-section expands. Fig. 7(c) shows that when the value of k in
Eq. (161) vanishes, then the solution admits an uncontrolled hour glassing mode. Therefore, for the re-
mainder of the solutions presented, the value of k is specified by Eq. (161).

Fig. 8 shows the solution for a vertical force (« = 90°) for different values of the nominal engineering
shear strain P/u*A4. Actually, the load corresponds to shearing only for small deformations, since for large
deformations (P/u*4 = 0.05), the load rapidly transitions from shearing to tension as the beam is bent. The
Cosserat solution compares quite well with the elastica solution, except for the highest load where the
effects of shear deformation and extension in the Cosserat solution are apparent. Fig. 9 shows three
equilibrium solutions for each of five different vertical loads (« = 90°). The solution associated with branch
I would be obtained by continuously increasing the vertical load from zero. Whereas the solutions for
branches II and III require the temporary application of a bending moment until the equilibrium position is
assumed with only a vertical force applied. Notice that at the nominal load of about 0.022 (Fig. 9(a)),
branches II and III nearly coincide. Also, notice that as the load is increased, branches II and III diverge
with a rapid change occurring near the minimal load 0.022. Comparison with the elastica solution shows
that the effects of shear deformation in the Cosserat solution are quite significant, with the Cosserat beam
being more flexible than the elastica. In particular, the Cosserat solution associated with branch III, for the
highest load (Fig. 9(e)), indicates that the beam makes contact with itself (which was not included in the
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Fig. 8. Equilibrium solutions for a vertical force P applied to the end of a cantilever beam. Comparison of the elastica model with the
Cosserat model for N = 32 elements.

solution procedure). The character of these three branches are shown more clearly in Fig. 10 where the load
is plotted as a function of the curvature x(0) at the clamped end of the beam. For the Cosserat solution, this
value of curvature was specified by

m*-ez
0) ="
K() E*J* )

where /* is the second moment of area of the cross section given by fifth part of Eq. (E.3). In particular,
notice that for a nominal load above about 0.022, equilibrium solutions associated with branches I, IT and
IIT are possible. However, the stability of these solutions has not been investigated.

The solutions given in Figs. 8-10 have been shown for 32 elements. Fig. 11 shows that reasonable
convergence is obtained for 32 elements. In particular, for the shearing branch I, Fig. 11(a) shows that four
elements are sufficient for a nominal load of 0.001, and Fig. 11(b) shows that eight elements are sufficient
for a nominal load of 0.01. Also, Fig. 11(c) shows that 32 elements are required to obtain good convergence
for the highest load associated with branch II.

Finally, compressive (« = 0°) buckling of the beam is considered in Fig. 12, where the horizontal load P
has been normalized by the linear Bernoulli-Euler critical load P,

(163)

T E*[*
Py=———. 164
42 (164)
This figure shows a rapid change in the equilibrium configuration near the buckling load. It also shows that
the elastica solution is quite accurate, except near the highest two loads where the effects of shear defor-
mation become important.

11. Summary

The theory of a Cosserat point has been developed as a continuum theory with basic balance laws that
characterize: conservation of mass, balance of linear momentum, balances of director momentum and
balance of angular momentum. Constitutive equations for nonlinear elastic Cosserat points have been
derived in a similar manner to those in the full three-dimensional theory by relating resultant forces and
couples to derivatives of a strain energy function. Moreover, the resulting equations are properly invariant
under SRBM and they are valid for large deformations and rotations. Also, the constitutive equations have
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Fig. 9. Three equilibrium solutions for a vertical force P applied to the end of a cantilever beam. Comparison of the elastica model with
the Cosserat model for N = 32 elements.

been suitably restricted so as to produce exact solutions for all homogeneous deformations of the rod. In
addition, the constitutive equations for inhomogeneous deformations (like those associated with bending
and torsion) have been considered within the context of a strain energy function, which is a quadratic
function of nonlinear strain measures.

The numerical solution procedure proposed in this paper models dynamic nonlinear three-dimensional
motion of a rod by considering N connected Cosserat points, each of which models the deformation of a
section of the rod. For dynamic problems, the balance laws and boundary conditions reduce to a finite set
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Fig. 10. Plots of the load versus the curvature x(0) at the “clamped” end of a cantilever beam loaded by a vertical force P. Comparison
of the elastica model with the Cosserat model for N = 32 elements.
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Fig. 11. Center line of a cantilever beam loaded by a vertical force P. Convergence of the solution for different numbers N of elements.
(a) and (b) show the solutions of type I and (c) shows the solution of type II.

of ordinary differential equations that depend on time only, whereas for equilibrium problems the resulting
equations are algebraic.

In contrast with the standard Galerkin procedure, the constitutive equations of the Cosserat theory take
forms very similar to those in the three-dimensional theory, and the constitutive coefficients are determined
by comparison with known exact solutions of the three-dimensional theory or with appropriate experi-
ments. This allows for the determination of constitutive coefficients, which take full advantage of the re-
duced number of degrees of freedom of the model.

The solutions of a number of static problems have been considered. For these problems, it has been
shown that the results of the Cosserat theory compare well with those of an elastica, except where the effects
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Fig. 12. Buckling due to a compressive horizontal force P. The values of P have been normalized by the critical Bernoulli-Euler
buckling load P.

of shear deformation or extension become important. In these later cases, the Cosserat theory predicts
results that are consistent with the added flexibility associated with the additional modes of deformation
included in the Cosserat theory.
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Appendix A. Derivation from the three-dimensional theory

A rod-like structure is a three-dimensional body that can be modeled as a space curve with some small
cross-sectional area. In its reference configuration, material points on the space curve are parameterized by
the convected coordinate 6°, and the cross-sections (6° = constant) are taken to be planes, which are pa-
rameterized by the convected coordinates 6%, with 6* = 0 being the centroid of the cross-section.

In its reference configuration, a section of the rod occupies the region of space P, that is bounded by its
lateral surface 0Py and its ends 0Py, (with 6° = &) and 3Py, (with 6° = &,). Also, material points in the
reference configuration of this section of the rod are located by the position vector X*(¢'), such that

X*(0') = Dy + 0'[D; + 0°D,] + 0°[D; + 0°Ds] + 6°Ds,
n3 3 1
0" =0 —5(514'52),

G =X, =D, + 0Dy, G, =X,;;=D, + 0°Ds,

1 2 1/2 (Al)
G; =X,;=D; +0'D, + 0°Ds, G =G, x Gy-G; >0,

where the vectors D; are constant vectors, the vectors (Dy, D,, D) are assumed to be linearly independent
(14), and G; are the covariant base vectors in the reference configuration.

In the present configuration, the region occupied by this material section of the rod is denoted by P, with
the lateral surface 0P and the ends 0P, and 0P,. Material points in the present configuration of this section
of the rod are located by the position vector x*(#',), which is a function of the convected coordinates and
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time ¢. In order to motivate the balance laws for the Cosserat point model of a rod, it is assumed that x*
admits a similar representation to Eq. (A.1), such that

X*(0F,1) = do(¢) + 0'[d; (¢) + 0°dy(2)] + 0°[da(2) + ds(0)] + O°ds(2),
g =x,=d, +0d,, g =x,;=dy + 0°ds, (A.2)
g =x5=d;+0'dy + 0°ds, g =g xg- g >0,
where d;(¢) are vector functions of time only, the vectors (d;,d,, d;) are assumed to be linearly independent
(2), and g; are the covariant base vectors in the present configuration.

Now, the local forms of the conservation of mass and the balances of linear and angular momentum can

be written as
mt = p*gl/2 — PBGI/Z _ m*(()i)7 (A 3)
mv =mb +t7, TT=T, '

where p* is the mass density per unit volume dv* in the present configuration, pj is the mass density per unit
volume dV* in the reference configuration, v* is the material velocity, b* is the specific (per unit mass) body
force, T* is the Cauchy stress, and t*' are defined by

t =g Tg. (A4)
Also, G' and g’ are reciprocal vectors defined by
G -G =4, g-g =0 forij=12,3, (A.5)

and t* is the stress vector per unit present area da*, which is related to T* and the unit outward normal
vector n* to the boundary 0P of the region P by the expression

t=Tn" (A.6)

Next, balance law (A.3) (second and third part) can be multiplied by a weighting function ¢ of 6’ only,
and the results can be integrated over the region P to deduce the averaged balance laws

d * *_
&/})W)dv—oa

d ,
— / ppvidv = / dp b dv* +/ pt'da” — / T'g ¢ dv" + ¢t'da” +/ ot da”. (A7)
dr Jp P on P op, op,

Also, the global form of the balance of angular momentum can be recorded as
d /x* x p*vdv" = /x* x p*b*dv* +/ x* x t'da”. (A.8)
dr Jp P op

Then, using the definitions in Appendix B, the conservation of mass (5) (first part) and the balances of
director momentum (5) (second part) can be determined by Eq. (A.7) (first part) with ¢ = 1, and Eq. (A.7)
(second part) with ¢ = (1,60%,0°,0"0°). Also, the balance of angular momentum (7) for the Cosserat point
can be obtained using the definitions in Appendix B and balance law (A.8).

Appendix B. Definitions for a Cosserat point

In this appendix, a number of definitions are introduced that are used to derive the balance laws for a
Cosserat point from the three-dimensional theory. Specifically, the total mass m of the Cosserat point and
the director inertia coefficients y” are defined by
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m:/p*dv*, yOOZ 1’ myoa:/exp*dv*,
P P

my03 — / gSP*dU*, my04 — / 01 éSP*dU*,

P j2
myOS _ / 02§3p*dv*7 myac[i — / Higﬂp*dv*,

P P
my(x3 — / 0193p*du*7 myx4 _ / 9&61§3p*dv*,

P P

my™ :/9“0293p*dv*, my33:/§3§3p*dv*,
P

P
my34:/9163é3p*dv*’ my35:/02§3é3p*dv*,
P P
my44:/01010‘3073;)%1)*7 my* 2/01029393p*dv*,
P P

my> = / 0*0*6°0° p*dv*, W=y" forij=0,1,2,...,5.
P

The assigned fields B’ due to body force and tractions on the lateral surface of the section of the rod are
defined by

b’ = [ pvar [ vda,
P 0P,

mB”* = / O p'b dv” + 6*t"da”,
P

o,
mB? :/§3p*b*dv*+/ 0’t"da’, (B.2)
P 9

mB* = / 0'0p'b*dv + | 0'0°t*dd’,
P

oP.

mB® = / 0*0°p'b*dv + | 0*0°t*da’.
P

P

Next, the director couples m!, applied to the ends 0P, of the section of the rod are defined by

m) = / t'da*, m/ = / 0°t*da”,
oP, oP,

m'= | 0tde’, mi=[ 0'0tda, (B.3)

0P, 0P,

m = [ ¢Prda,
[

and the external assigned fields b’ due to body force and surface tractions on the lateral surface and on the
ends of the rod are defined by

mb' =mB' +m) +m, for i=0,1,...,5. (B.4)

Furthermore, the intrinsic director couples t' are defined by
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t" =0, t :/T*g“du*,
P

(B.5)
t = / T g*dv’, tt = / T [g'0° + g°0']dv", t = /T*[gzé3 + g*0°)dv".
P P P
Now, substituting Eq. (B.5) in definition (9), it can be shown that
4T = / Tg' @ (d; + 0°dy) + g' @ (dy + 0°ds) + & @ (ds + 0'ds + 07ds)]do. (B.6)
P
Thus, with the help of Eq. (A.2), it follows that T is the average of the Cauchy stress
d'"’T = / T dv*. (B.7)
P

In order to understand the physical meaning of the director couples (B.3), it is first noted that the
quantities m? represent the total resultant forces applied to the ends 0P,. Also, since 0> = ¢, on 0P, it
follows that the quantities m’, are related to each other by the formulas

L L
ml = —Em?, mg :Emg7
L L
4 1 4 1
m, = ——m m: =—-m
1 5 M > = 5y, (B.8)
L L
mf:—imf, mgzimg,
L=¢ —-¢

Furthermore, it is noted that the total moments applied to the ends 0P, about the origin can be expressed in
the forms

. L
/ X x t'da* = (do — —dg) X m(l) +my,
oP 2

. L
/ X" x t'da” = <d0 + —d3> X m) + my,
P 2

where m, are the moments applied to the ends 0P, about the centroids 0” = 0 of those ends and are defined
by expression (75).

(B.9)

Appendix C. Three-dimensionally homogeneous deformations

The objective of this appendix is to develop an expression for the three-dimensional deformation gra-
dient F* and to determine the necessary and sufficient conditions for the deformation to be three-dimen-
sionally homogeneous. Also, specific expressions for the resultant forces and couples will be obtained for a
three-dimensionally homogeneous nonlinear elastic material. To this end, it is convenient to introduce the
tensors

A =D, 2D?, A =Ds @ D?, A; =D, D! + D5 ® D?,

C.1
M =Fldy @D, A =Flds @ D, M =F'(d;®D' +ds @ D?), (1)

so that the covariant and contravariant vectors defined in Appendix A can be written in the forms
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G = (I+0°A, + PA)D,, G = (I+0°A, + 0°A;) "D,

. (C.2)
g, =F(I+ 0"\, + 0°h;)D; fori=1,2,3.
Then, the three-dimensional deformation gradient F* can be expressed as
3
= 8 ®G =F(I+ 0%, + 0hs) I+ A, + 0°A3) " (C.3)

For three-dimensionally homogeneous deformations, the deformation gradient is independent of the
coordinates ' so that

F* =F(1). (C4)
Thus, with the help of Eq. (C.3), it follows that
A=A, A=Ay, d=FD,  ds=FD;. (C.5)

This also means that for three-dimensionally homogeneous deformations, the strains p, defined by Eq. (18)
necessarily vanish

B, =0. (C.6)

Thus, condition (C.6) is a necessary condition for the deformation to be three-dimensionally homogeneous.
Moreover, by using Eq. (18) it is easy to see that condition (C.6) is also a sufficient condition because they
immediately yield the results (C.5), which can be used in Eq. (C.3) to show that Eq. (C.4) holds.

For a three-dimensional uniform homogeneous nonlinear elastic material, the reference mass density p;
is constant and it can be shown that the Cauchy stress T* and the three-dimensional strain energy function
2* can be written in the forms

ox*(c”
>t =3(C), C=F"F, JT =2pF aé* )F*T. (C.7a—<)
It then follows that for three-dimensionally homogeneous deformations
90X (C
F' =F, J=J, C'=C, JT* = 2p;F aé )FT. (C.8)

Also, since p; is constant, it follows from Eqgs. (A.3) and (B.1) that
m = pyVD'?, DI/ZV:/ dr-, (C.9)
Py

where V is related to the reference volume of the Cosserat point, dV* is the element of volume in the
reference configuration, and Py is the region occupied by the point in the reference configuration. Next,
with the help of the fact that

g =F"'G" fori=1,2,3, (C.10)
and using expressions (16), (B.5) and (B.7), it can be shown that
62*(C)

d'*T = JyD'’T* = 2m F',
oC
02 (C) 0" (C) . »
4 _omF =/ C ' S —omF—— C V2, (C.11)

where (T, , %) are the elastic parts of (T, t*,t°). Also, the constant vectors V* are defined by
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D'2yV! :/[G1§3+G391]dV*7
Py

D'?yV? = / [G*0° + G*0*]dV. (C.12)
Py

Appendix D. Galerkin procedure for determining material constants

The objective of this appendix is to determine material constants that are consistent with the Galerkin
procedure applied to the solution of the linearized theory. To this end, consider a beam, whose reference
configuration is characterized by Eqgs. (77) and (78), and introduce the displacement vectors 8;(¢) such that

L
d0:§e3+60, d, =e, +39, d; =e;3 +8;, dy = 8y, ds = 8s. (D.1)
Now, using representations (A.1) and (A.2) for the three-dimensional position vector, and definition (C.3)
for the deformation gradient F*, it follows that
X (07,1) = X (0') + 8 + 0'[8; + 0°84] + 0°[8, + 0°85] + 0°85, F*
=I1+(3 ®e+8, Qe +830e;3)+0' (84 0e3)+0°(8s@e3) + 0P (80 e, + 85 ®ey). (D.2)

Moreover, neglecting quadratic terms in the displacements &, and using definition (C.7b), it can be shown
that the linearized form of the three-dimensional Lagrangian strain E* becomes

E' =4C" ~1)=E+0'E, + 0’E, + 0°E;,

=301 ®e +d,®e; +0;0e3) + (e ®0; + € ® 5, +e3 ® d3)],
=31(8s ® e3) + (e3 ® 84)], E, = [(85 ® e3) + (e3 ® 85)],
=i(ds®e +0sRe) + (€ ® 8y + € ® 85)].

(D.3)

Nh—‘ NI'—- NI'—' 5]

Next, it is recalled that the strain energy function X* for an isotropic material can be expressed in the
form

PiEH(E") = K" —30) (" - 1) 4 ' (E'-E), (D4)

Thus, the Galerkin procedure is consistent with the approximation that the strain energy X of the Cosserat
point is given by

mx = / pi S (EHdV™, (D.5)
Py

where m is determined by Eq. (C.9). Now, in view of specification (77) and (A.1), it can be shown that

/dV*zV, /91dV*:0, /QZdV*_o /§3dV*_0 /eedV*—
Py Py

2 2
/9292dV*:K, /§3§3dV*:£, /eade* /00%11/* /9293dV*
PO 12 PO 12
(D.6)

Consequently, by substituting approximation (D.3) into Eq. (D.5) and using Egs. (50) and (D.6), it follows
that
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R H2 R W2 R L2 .
mE=mE(B) 4 m¥,  m¥=m| 52 () o (B + 5 2 (Es) | (D.7a,b)

Furthermore, using definitions (18), (61), specification (78), and linearized expressions (D.1) and (D.3), it
can be shown that

K K K!
d=—e, =2 E-(eoeatexe)
1 i i
E; = 7 K& Qe +e®@e)+K5(e; Qe+ e e (D.8)

Moreover, using Eq. (65), it follows that
1 3

1
(E -1 = E(KI)Z’ E-E =75 [(1)7 + 201)” + (1 + @2)],
1 1
(B2 1" = 5(53)", BBy =55 () +206)" + (02 — o), Do)
(5 1) = 26} + 2613 + ()%,
1
Es - B> = 575206 +208)° + (1)’ + (19)” + 4o

Thus, with the help of Eq. (D.9), expression (D.7b) can be written in the form (first part) (65), where the
values of the constants k; associated with the Galerkin procedure are given by

11, . 4\ H? 17, L 4 N\ WP
k1—E_M +(K +§M>F:|7 kz—ﬁ[ﬂ +(K +§M>F]a

1 H* w? 1 4 H?
— o _ K* o * T
ka 12“[L2+L2]’ K 12[( +3“>+“ LZ}’
i 4 1 H oW
k:_ * ot * k:_*4 . .
3 12_( +3“>+“ LZ]’ 6 IZM{+L2+L2}’
1[5 w?
by = K" — S ks = ot | —
S R T

The values of k; and &, in Eq. (D.10) are different form the values given in Eq. (100) because kinematic
assumption (D.2) is incompatible with uniaxial stress for pure bending. For this reason, the coefficients for
bending are usually obtained by modifying the three-dimensional strain energy function and considering
only the strain energy of uniaxial stress such that

(D.10)

PiZ (E) = B (s @ e)]” (D.11)

Then, using kinematic approximation (D.3), it can be shown that

mX = / 2" (EN)dV* = m2*(E) + m¥P,
Py
(D.12)
H2 S W2 S 1 * H2 332 W2 332
’”“”—’"{122 B+ <E2)} =3F [12L2 ()" + 1z ()|

which yields expression (100) for the bending coefficients k; and k,. However, constitutive equation (D.11)
does not explicitly model shear deformation or stretching and shearing of the cross-section.
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Furthermore, to make the standard Galerkin procedure more apparent, it is desirable to write the three-
dimensional position vector in terms of nodal values and shape functions. Specifically, the nodal quantities
are the vector ,d;(¢), which locates the centroid of the Ith cross-section, and the vectors ,d}(¢) and ,d;(¢),
which can be identified with material fibers in the cross-section. Moreover, the value of 0° associated with
the Ith cross-section is given by

0> = ¢, for the Ith cross-section. (D.13)

Next, in order to represent the shape functions associated with these nodal quantities, it is convenient to
introduce the functions ¢;(0%) defined by

6
¢ (07) = ? = for§<0'<s, ¢(0)=0 for 6’ >,
261
3 93 _ 5171 3 3 €]+1 - 03 3
¢(0°) = ——— for & <O <, $(0°) =—— for & <0 <&y,
¢r— ¢ S — ¢ (D.14)
Y=0 for@®<& , or@=¢,,, forl=23,....N
1 +
3 03 - éN 3 3 3
Py (07) = W for &y <0° <&y, Py (07) =0 for 6" <&y,
N+1 TGN
which have the usual properties that
¢;(&) =06y forl,J=1,2,...,N+1. (D.15)

Finally, the position vector in the rod-like region is expressed in the form

N+1

X(0',0) = Dby (07) () + 0"} (1) + 07,3 ()], (D.16)

where the shape function are given by

{¢1,0,0',¢,0°}. (D.17)

Although higher order dependence on 6 can be considered in the general Galerkin method, these shape
functions have been specified to be consistent with kinematic assumption (A.2) associated with Cosserat
theory.

Appendix E. Basic equations for the elastica

The elastica is a model for the nonlinear deformation of an elastic rod that neglects extension along the
rod, tangential shear deformation, normal cross-sectional extension and normal cross-sectional shear de-
formation. The equations for the elastica have been reviewed by Love (1944), but here it is more convenient
to use the notation presented in Rubin (1997), where a generalized intrinsic formulation for nonlinear
elastic rods has been presented.

For two-dimensional static deformation of the rod, the reference curve is characterized by the La-
grangian coordinate 0° and the position vector x(0%), such that

X :x1(93)e1 +x3(93)e3, 0<93<L0 (El)

Also, the unit tangent vector e, and unit normal vector e, are defined by
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= a—; = sinfe; + cosfes, e, = e, X e, = cosfe; — sinbe;, (E.2a,b)

where 0(63) is the angle that the tangent vector e, makes with the direction e;. Next, the force n and moment
m acting on the cross-section, whose unit outward normal is in the e; direction are expressed in the forms

€

B B ~ dm
n = ne; + vey, m = me;, U= 40’ (E3)
m:g:m*}c [*:H3W UzlE*[*Kz K:do
dx ’ 12 2 ’ do*’

where 7 is an arbitrary function of 0, which is a constraint response associated with the inextensibility
condition, I* is determined by the geometry of the cross-section, k is the curvature of the center line of the
beam, and o is the strain energy function associated with bending. Here, the unit normal vector e, is defined
by Eq. (E.2b) instead of by the usual expression given in Rubin (1997). Therefore, e, does not necessarily
point towards the inside of the curve so that k can have positive or negative values.

In the absence of body forces and surface traction on the lateral surface of the beam, the equilibrium
equation reduces to

dn

do?
Thus, for the problem described in Section 10, it can be shown that the solution of Eq. (E.4) can be ex-
pressed in the form

— 0. (E.4)

n = P(since; — cosae;) = P[—cos (6 + o)e, + sin(0 + a)e,],

E.5

n=—Pcos(0+ a), v = Psin(0 + a), (E:5)
where P and o are constants. Now, Egs. (E.2a) and (E.3) (third part) can be rewritten as

de; . dx; d*0 { P } ,

— = sin0, —= = cos/0, ———+ | ——|sinf = 0. E.6

de’ de’ d’y?  LET (E6)
Moreover, for the problem of Section 10, these equations are integrated subject to the boundary conditions

do
x1(0) =0, x3(0) =0, 6(0) =0, 7 (Ly) = 0. (E.7)

Specifically, Eq. (E.6) is integrated using the program MATLAB by guessing the value x(0) of the curvature
at the end 0° = 0

do

—(0) = k(0), E.8

TS (0) = x(0) (E.8)
and iterating on the value of x(0) until fourth part of condition (E.7) (requiring the moment to vanish) is
satisfied.
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